

Tulissin[®] 25 - (tulathromycin injection)

Product Description

- Tulissin 25 (tulathromycin injection) injectable solution is a ready-to-use sterile parenteral reparation containing tulathromycin, a semi-synthetic macrolide antibiotic of the subclass triamilide.
- Each mL of Tulissin 25 injectable solution contains 25 mg of tulathromycin.
- For use by or on the order of a licensed veterinarian.

Formulation

- 25 mg of tulathromycin/mL
- For use in swine*

Indication

 Tulissin 25 injectable solution is indicated for the treatment of swine respiratory disease (SRD) associated with Actinobacillus pleuropneumoniae, Pasteurella multocida, Bordetella bronchiseptica, Haemophilus parasuis and Mycoplasma hyopneumoniae; and for the control of SRD associated with Actinobacillus pleuropneumoniae, Pasteurella multocida and Mycoplasma hyopneumoniae in groups of pigs where SRD has been diagnosed.

Packaging

 Tulissin 25 injectable solution is available in 100 mL vials and 250 mL vials.

Dosage/Administration

 Swine: Inject intramuscularly as a single dose in the neck at a dosage of 2.5 mg/kg (1 mL/22 lb) body weight (BW). Do not inject more than 4 mL per injection site.

Precautions

- The effects of Tulissin 25 injectable solution on porcine reproductive performance, pregnancy, and lactation have not been determined. Intramuscular injection can cause a transient local tissue reaction that may result in trim loss of edible tissue at slaughter.
- U.S. federal law restricts this drug to use by or on the order of a licensed veterinarian and prohibits the extra-label use of this drug in foodproducing animals.

Withdrawal Period

 Swine: Swine intended for human consumption must not be slaughtered within 5 days from the last treatment.

Storage

Use within 45 days of first puncture and puncture a maximum of 30 times. Consider using automatic injection equipment or a repeater syringe. When using a needle or draw-off spike larger than 16 gauge, discard any remaining product immediately after use.

Key Features

- If you trust your herd with tulathromycin, then you need Tulissin 25 injectable solution.
- Goes to work in minutes.¹
- Concentrates in the most susceptible areas of the respiratory system.
- Provides nine days of lung activity to treat and control SRD.²

IMPORTANT SAFETY INFORMATION TULISSIN® 25 (tulathromycin injection):

Not for use in ruminating cattle. Ensure a pre-slaughter withdrawal time of twenty-two (22) days in calves and five (5) days in swine. The effects of tulathromycin on bovine and swine reproductive performance, pregnancy and lactation have not been determined. Do not use in animals known to be hypersensitive to the product.

*Also approved for use in Suckling Calves, Dairy Calves, and Veal Calves. For more information, contact your Pharmgate Representative.

Antibiotic 25 mg of tulathromycin/mL For use in suckling calves. es, dairy calves, yeal calves, and swine. Not for use in ruminating cattle CAUTION: Federal (USA) law restricts this drug to use by or on the order of a licensed ve

TOURS AT A INSCRIME COUNTY OF a FEW PORT OF THE PRIVATE IN PRIVATE IN THE ATTENTION OF THE

usationoryon in a V i raio. The chemical raises of the isomers are (2R.28.48,58.88,10R,118,128,138,14R)-13. [[2.6.discow 3-3.-methyl-3-0-methyl-4-c] (proxylarinion) methyl-1--thobreopyrano-syl-ory) 2-ethyl-3.41 [Printprison 3,58,101,12]. (4.1-the inserting 1.1-the inserting 1.1

INDICATIONS

Swine.

IULISM 25 Injectable Solution is indicated for the treatment of swine respiratory disease (SRD) associated with Activobalius pleuropneumoniae, Pasteurolla multiodia, Bordellella brionizieptica, Hemophilas passas, and Macquistera in popuraminise, and for the control of SRD associated with Activobalius pleuropneumoniae, Pasteurolla multiooda, and Mycopiasma hyponeumoniae in groups of pigs where SRD has been diagnosed.

Suckling Calves, Dairy Calves, and Weal Calves
BRD - TULSSIN 25 Injectable Solution is indicated for the treatment of bovine respiratory disease
(BRD) associated with Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and
Mycoplasma boxis

DOSAGE AND ADMINISTRATION

Swine Inject intramuscularly as a single dose in the neck at a dosage of 2.5 mg/kg (1 mL/22 lb) Body Weight (BW). Do not inject more than 4 mL per injection site.

Table 1, TULISSIN 25 Injectable Solution Swine Dosing Guide (25 mg/mL)

The Court to a general to the court of the c						
Animal Weight (Pounds)	Dose Volume					
(Decordo)	(mL)					
(Pourius)	(IIIL)					
4	0.2					
10	0.5					
15	0.7					
20	0.9					
22	1.0					
25	1.1					
30	1.4					
50	2.3					
70	3.2					
an an	40					

nject subcutaneously as a single dose in the neck at a dosage of 2.5 mg/kg (1 mL/22 lb) body veight (BW). Do not inject more than 11.5 mL per injection site.

Animal Weight (Pounds)	Dose Volume (mL)					
50	2.3					
75	3.4					
100	4.5					
150	7.0					
200	9.0					
250	11.5					

CONTRAINDICATIONS

The use of TULISSIN 25 Injectable Solution is contraindicated in animals previously found to be hypersensitive to the drug.

FOR USE IN ANIMALS ONLY. NOT FOR HUMAN USE. KEEP OUT OF REACH OF CHILDREN. NOT FOR USE IN CHICKENS OR TURKEYS.

RESIDUE WARNINGS

Swine
Swine intended for human consumption must not be slaughtered within 5 days from the last treatment.

Calves Included for human consumption must not be slaughtered within 22 days from the last treatment with TULISSIN 25 Injectable Solution. This drug is not for use in ruminating cattle.

PRECAUTIONS

Swine
The effects of Tulissin 25 Injectable Solution on porcine reproductive performance, prepnancy,
and location have not been determined. Intramascular njection can cause a transient local tissue
reaction that may result in timi loss of edible tissue at sloughter.

Cartle
The effects of Tulssin 25 Injectable Solution on bowine reproductive performance, pregnancy, and lactation have not been determined. Subcutaneous injection can cause a transient local tissue reaction that may result in trim loss of edible tissue at saughter.

ADVERSE REACTIONS

Calves
On Time 8D field study, two calves treated with fullathromycin injection (100 mg/mL) at 2.5 mg/kg
With diffilled transient hypersalivation. One of these calves also exhibited transient dyspnes,
which may have been related to preumonia.

which may have certireation by Parameters

Post Approved Experience
The following adverse events are based on post approval adverse drug experience reporting for
thatformous injection (100 mg/mL). Not all adverse events are reported to the FDA CVM. It is not
always possible to reliably estimate the adverse event frequency or establish a causal relationship
to product exposure using fixee data. The following adverse events are lateful in decreasing order
of reporting frequency in cattle injection sale reactions and anaphylacids/anaphylacidor freactions.
For additional information about develop upperhere reporting for animal drugs, contact FDA
all Confidence (PDA)

The Confidence of the Co

LINITIAL PHARMACULOY
A thylosological Full full thoronom (a weak base) is approximately \$0 lines more soluble in hydrophic han lipophilic media. This solubility profile is consistent with the extracelular perticipes extently relicant associated with the extracelular perticipes extently relicant associated with the meandrieds. Whateful higher tallation concentrations are observed in the lung parenchyma as compared to the plasma, and these devided concentrations can remain in lung tissue for several days beyond that which the measured in the plasma. However the clinical relevance of these elevated lung concentration is undetermined.

As a class, macroides tend to be primarily bacteriostatic, but may be bacterioidal against some pathogers. When acting as a odial compound, they tend to exhibit concentration independing littling the rate of bacterial exhibitation does not change once seem drug concentration resch. 2 to 3 times the minimum inhibitory concentration MiC) of the targeted pathoger, thick these conditions, the time that sour concentrations retain above the MiC becomes the migror determinant of antimization activity. Microides also orbital a post entitlosit cellera (PAE) the macroides concentration and the exposure time; the PAE all little seed to sook primarily successful. Tutathromyon is eliminated from the body primarily unchanged via bilitary exception.

*Carbon, D. 1998: Pharmacodynamics of Macrolides, Azalides, and Streptogrammiss Effect on Extracellular Pathogens. Olin Infect Dis., 272-83.2
*Notifyingle, D. 1997. Pharmacodineitics and Pharmacodynamics of Never Macrolides. Pediatr. Infect. Dis. J., 16438-443.

is. J., 16-43-64-43. Andles D, Anon J, Jacobs MR, Craig WA. (2004). Application of pharmacokinetics and pharmacodynamics antimicrobial therapy of respiratory tract infections. Clin Lab Med., 24:477-502.

Online of the Commission of th

Comparative Bioanalbilini Summary
Despite slightly lower peak concentrations with tulathromycin injection 25 mg/mL, a sing
Modes of 25 mg fullathromycing Biod of either tulathromycin injection (100 mg/mL) or
tulathromycin injection (25 mg/mL) resulted in comparable tulathromycin latel systemic
resource. Therefore, tulathromycin injection 25 mg/mL is considered to be therepare
ceptureller to tulathromycin injection 100 mg/mL when administered to swime by IM rejec
a dozen 0.5 mg bullathromycining Biod.

Jakes (Coloming subsultaneous (SC) administration into the neck of feeder calves at a disage of 15 mg/lag Mt Mathromonia in sently completely absorbed, with peak plasm concentrations of several with 14-25 for The volume of distribution exceeds 11 (Hey, Mirthis conscious totalessale brinding.) This large distribution volume results in a long terminal elimination addition from the Into Olomus, despite a rapid systemic fee drug clearance (TO mL/kg/hr). In pharmacokinetic differences are observed in castrated male versus female culves.

No pharmacokinetic differences are observed in castrated male versus termale caives.

Comparative Bloavailability Summary
Despite lower peak concentrations with fusithromyoin injection 25 mg/ml., a single SO dose of 2.5 mg lastfromyon/ng BW of either fusithromyon-injection (100 mg/ml., a single SO dose of prepared (22 mg/ml.) resisted in comparable total systems to taithromyon-ing sopoure. Therefore, injection (100 mg/ml.) when administered to calves by SC injection of 100 mg/ml. when administered to calves by SC injection at a dose of 2.5 mg fusithromyon/ng BW.

*Clearance and volume estimates are based on intersubject comparisons of 2.5 mg/kg BW administered by either suboutaneous or intravenous injection.

Sortine

Sor

Table 3. Tulathromycin minimum inhibitory concentration (MIC) values* for indicated pathogens isolated from field studies evaluating SRD in the U.S. and Canada.

Indicated Pathogen	Date isolated	No. of isolates	MIC ₅₀ † (μg/mL)	MIC ₉₀ † (μg/mL)	MICrange (μg/mL)
Actinobacillus pleuropneumoniae	2000-2002 2007-2008	135 88	16 16	32 16	16 to 32 4 to 32
Haemophilus parasuis	2000-2002	31	1	2	0.25 to > 64
Pasteurella multocida	2000-2002 2007-2008	55 40	1	2 2	0.5 to > 64 ≤ 0.03 to 2
Bordetella bronchiseptica	2000-2002	42	4	8	2 to 8

* The correlation between in vitro susceptibility data and clinical effectiveness is unknown.
† The lowest MIC to encompass 50% and 90% of the most susceptible isolates, respective

Laters

(Lighthomycin has demonstrated in vitro activity against M. haemolytica, P. multocida, H. somni, and M. bons, four pathogens associated with BHO. The MiDs of fullationsyon against indicated plantogens collected from field studies using full bitmorphis intellection (100 mg/mL) were better more considered using methods recommended by the CLSI (MS1-42). These values are represented in Table 4, below.

Table 4. Tulathromycin minimum inhibitory concentration (MIC) values* for indicated pathogens isolated from field studies evaluating BRD in the LLS

Indicated Pathogen	Date isolated	No. of isolates	MIC _{so} † (μg/mL)	MIC ₉₀ † (μg/mL)	MICrange (μg/mL)
Mannheimia haemolytica	1999	642	2	2	0.5 to 64
Pasteurella multocida	1999	221	0.5	1	0.25 to 64
Histophilus somni	1999	36	4	4	1 to 4
Mycoplasma bovis	1999	43	0.125	1	≤ 0.063 to > 64

* The correlation between in vitro susceptibility data and clinical effectiveness is unknown.
† The lowest MIC to encompass 50% and 90% of the most susceptible isolates, respectively

EFFECTIVENESS

usernoyoun njection 25 mg/ml.

In mills boston field study the culsulate the treatment of naturally occurring SRD, 266 pips were treated with haldromyon injection (100 mg/ml.). Begrones to treatment were compared to stainle-treated control. Success was defined as a psy with normal attitude, roman terpartian, an rectal temperature of 1:104°F on Day 7. The treatment success rate was significantly greater (9: 0.05) in lutaffromyon injection 100 mg/ml. Inteated pips (0:75). So compared to saline-treated pips (0:61.3), M. Approximoniae was isolated from 105 saline-treated and non-treated sentinel pips in this study.

pgs in this study.
Two induced infection model studies were conducted to confirm the effectiveness of
tulathromyoin injection (100 mg/ml.) against M. hyporeumoriae. Ter days after inoculation
tulathromyoin injection (100 mg/ml.) against M. hyporeumoriae. Ter days after inoculation
tulathromyoin injection (100 mg/ml. (2.5 mg/ng/80 W) intramuscularly or an equivalent
volume of saline. Plays were euthanized and necrospad (10 days post-terethern. IT he mean
percentage of gross preumoria. Lung lesions was statistically significantly lower (P < 0.0001) for
tulathromyoin injection (100 mg/ml. Treated pigs than for saline-treated pigs in both studies (8.52%
vs. 23.62% and 11.31% vs. 26.42%).

vs. 2012; MID 11.51% S. 04-62).

The effectiveness of ultibromynin rijection (100 mg/mL) for the control of SRD was evaluated in a multi-location natural infection field study. When all least 15% of the study candidates showed clinical signs of SRD, all pigs were emilified and treated with fullatmorprion rijection 100 mg/mL (226 pigs) or saline (227 pigs). Responses to treatment were evaluated on 18y 7. Success was defined as an pay into moral lattude, normal respiration, and rectal temperature of 104°F. The treatment success rate was significantly greater (P < 0.05) in tulathorough in jection 100 mg/mL readed plays compared to saline interesting for \$25 vs. 41.2s).

Isotrogrin: truescus Jugas various page various de Calves Plasma concentrations of tulathromyoin administered as tulathromyoin njection (100 mg/mL) or as tulathromyoin njection (25 mg/mL) were demonstrated to be the appetitically equivalent (see CLINICE, PHARMADOLICE) Comparative Bioavailability Summany). Therefore, effectiveness studies conducted with tulathromyoin njection (100 mg/mL) support the effectiveness for tulathromyoin injection 25 mg/mL.

BRD- in a multi-location field study, 314 calves with naturally occurring BRD were treated with tutal/tromyon injection (100 mg/ml.). Responses to treatment were compared to saline-treated controls. A care was defined as a call with normal attitude/activity, normal respristion, and a rectal temperature of s 104° for 0 by 14. The cure rate was significantly higher (P > 0.05) in tutal/temporal metero. 100 mg/ml. Hearder calves (P.85) compared to saline-treated calves (P.84). Compared to saline-treated calves (P.84). Compared to saline-treated calves (P.84). Fifty who tutal/temporal meteron (100 mg/ml.) treated calves compared to sine BRD-related deaths in the saline-treated calves and 27 saline-treated calves from the multi-location field RRD treatment saliny feel declared calves and 27 saline-treated calves from the multi-location field RRD treatment saliny feel Morpolation box identified in outlares from the multi-location field RRD treatment salives. A solid response to the saline saline

23 (35.7%) calvies were treatment failures.

A Represent meta-purisy was conducted in compare the 880 treatment success rate in your caives (calvies weighing 250 lbs or less and feel primarily a milk based diej threated with trutathmorphin injection (100 mg/ml.) to be success rate in order calvies calvies eveliging more than 250 lbs and feel primarily a roughage and grain-based delit treated with fullationing rejection 100 mg/ml. The analysis included data from frue 1800 reterment effectiveness studie conducted from the experiment of the propriet of the distinction of the propriet of the distinction of the studies conducted frame frue 1800 mg/ml.) in the U.S. and naire conducted studies conducted frame from 800 mg/ml.) in the U.S. and naire conducted mg/ml. and least set good as the 800 treatment success rate in older treatment of 1800 associated with M.A. harmolying, if multicode, it sommt and M. box in suckling calves, and veal calves.

caves, oany caves, and vet caves.

Two induced infection model studies were conducted to confirm the effectiveness of tutalmorprism injection (100 mg/ml.) against Mycoplasma boxis. A total of 166 caves were inculated intrataceleally with field strains of Mycoplasma boxis. When caves became previous and had abnormal respiration scores, they were treated with either tutalmorprism nejection 100 mg/ml.

22.5 mg/g (RP) subcultaneously or an equivalent volume of saline. Caves were observed for signs of RPO for 14 days possitionensly or an equivalent volume of saline. Caves were observed for signs of RPO for 14 days possitionensly or an expression of RPO for 14 days possitionensly over the travel of the saline caves of RPO for 14 days possitioned by were the saline cave of RPO for 14 days possitioned by were the saline cave for signs of RPO for 14 days possitioned by were the saline cave for signs of RPO for 14 days possitioned by were the saline cave for signs of RPO for 14 days possitioned by were the saline cave for signs of RPO for 14 days possitioned by were the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline cave for signs of RPO for 14 days possitioned by the saline ca

ANIMAL SAFETY

Swine

Swine
Plasma concentrations of fullathromyoin administered as fullathromyoin injection (100 mg/mL) or as fullathromyoin injection 25 mg/mL were demonstrated to be therapeutically equivalent (see CLINICAL PH46MACOLOG), Comparable biologicallathing Summary). Therefore, systemic target and the properties of the properti

Calves

Townson by up 4-pos-injection.

Claves

Charles

seen in the disk claims administed L2.5 highing by will allow of scales administed L3.7 highing M1.

A safety study was conducted in preuminant claims 13 to 27 days of agreeowing flathromycin interpretation (100 mg/m1), at 2.5 mg/ling BM or 7.5 mg/ling BM or es shouldneously. With the least seven characteristic control of the least seven control of the control of

STORAGE CONDITIONS:

Store at or below 30°C (86°F). Use within 45 days of first puncture and puncture a maxin of 30 times. Consider using automatic injection equipment or a repeater syringe. When a needle or draw-off spike larger than 16 gauge, discard any remaining product immediater use.

TULSSW 25 (fullathromycin injection) Injectable Solution is available in the following package sizes: 50 mL vial 100 mL vial 250 mL vial .

Manufactured for

Virbac AH, Inc. P.O. Box 162059, Fort Worth, TX 76161 Made in France

Approved by FDA under ANADA # 200-668

To report suspected adverse drug events for technical assistance or to obtain a copy of the Safety Data Sheet (SDS), contact Whate AH Inc. at 18-00-383-6569 or us virtuac com. For additional information about adverse drug experience reporting for animal drugs, contact FDA at 1-888-FDA VETS or http://www.fda.gov/reportanimalee.


©2021 Virbac Corporation. All Rights Reserved. TULISSIN is a registered trademark of Virbac S.A. Rev. 06/21

Villarino N, Brown SA, Martín-Jiménez T. Understanding the pharmacokinetics of tulathromycin: a pulmonary perspective. J Vet Pharmacol Ther. 2014;37(3):211-221.

Waag TA, Bradford JR, Lucas MJ, et al. Duration of effectiveness of tulathromycin injectable solution in an Actinobacillus pleuropneumoniae respiratory-disease challenge model in swine. J Swine Health Prod. 2008;16(3):126-130.

Consult the full prescribing information for complete use information, including cautions and warnings. Always read, understand and follow the labeling and use directions. See label for the full prescribing information.

